

Opportunities for Ultrafast X-ray Physics

New science at the APS with short x-ray pulses

Philip H. Bucksbaum FOCUS Center, University of Michigan APS Workshop on Time-Domain X-ray Science Lake Geneva, WI, August 2004

Ultrafast X-ray Science

- What's Ultrafast?
- X-ray Science Contributions to Ultrafast Science: 1fs to 1ns
- Challenges and Opportunities: Shorten the x-ray pulses at APS to ~1psec
- Ultrafast Science at SPPS

Ultrafast Sources and Science:

How did lasers get so ultra-fast?

Kerr-lens modelocking

Optical Pulse Shaping

High Harmonics: Bremmstrahlung from atomic electrons driven coherently by the oscillating laser field

FOCUS

U_P=wiggle energy

High harmonics are fast (<1fs!) but soft (<0.5keV)

Sub-femtosecond pulses

M. Hentschel, Nature 414, 509 (01)

Attosecond high harmonics:

Time-resolved atomic inner-shell spectroscopy

M. Drescher⁺†, M. Hentschei⁺, R. Klenberger⁺, M. Ulberacker⁺, V. Yakoviev⁺, A. Scrinzi⁺, Th. Westerwalbesloh⁺, U. Kleineberg⁺, U. Heinzmann⁺ & F. Krausz⁺

Hard X-rays can probe structure
Ultrafast x-rays can probe it faster: dynamics

Stuff moves in 0.01-10 ps

Source: LCLS - The First Experiments; graphic from C. Siders

Laser-based x-ray experiments use pump-probe technique

Optical pump/X-ray probe

D. von der Linde, Universität Essen, Institut für Laser- und Plasmaphysik

Laser plasma x-rays: Time resolution < 1ps, but not many photons

Femtosecond X-ray measurement of coherent lattice vibrations near the Lindemann stability limit

Klaus Sokolowski-Tinten*, Christian Blome*, Juris Blums*, Andrea Cavalleri†, Clemens Dietrich*, Alexander Tarasevitch*, Ingo Uschmann‡, Eckhard Förster‡, Martin Kammler§ Michael Horn-von-Hoegen* & Dietrich von der Linde*

Nature, 422,p. 287 (2003)

APS: Lots of photons; not much time resolution (100 ps)

Synchronizing the x-rays and the laser to <10 ps:

Time-resolved Bragg Diffraction: Coherent Acoustic Phonons

Laser Pump/X-ray Probe Reis *et al.* Phys Rev. Lett.(86) 2001 I mpulsive Strain Generation (Thomsen *et al.* Phys Rev. B (24) 1986.)

0.8 0.6

experiment: InSb 111, 10mJ/cm²

simulation: 100ps & 1.25mdeg conv.

Picosecond time-resolved x-ray diffraction can be used to monitor atomic motions in liquids

Plech et al. Phys. Rev. Lett. 92, 125505 (2004)

The motion of the molecule and solvent develop in less than 100 psec; we need better time resolution:

- -Better synchronization
- -Shorter x-ray pulses

Synchronization: Use sampling method:

Typical time resolved experiment utilizes intrinsic synchronization between pump excitation and probe

- Electro-Optic Sampling delivers arrival time to users
 - Pump-Probe experiments now possible
 - Machine jitter exploited to sample time-dependent phenomena

Shorter x-ray pulses at 3d generation synchrotrons

Shorter pulses are also possible at the APS (Zholents et al.)

A schematic of the beam coupling produced by the RF cavities operated at *E*110 mode.

Optical scheme for pulse compression with a collimating mirror and a double asymmetrically cut crystal monochromator.

The Sub-Picosecond Pulsed Source (SPPS)

FOCUS

SPPS Collaboration

UC Berkeley

Roger W. Falcone Aaron Lindenberg Donnacha Lowney Andrew MacPhee

DESY

Jochen Schneider Thomas Tschentscher Horst Schulte-Schrepping

APS Argonne Nat'l Lab

Dennis Mills

MSD Argonne National Lab

Paul Fuoss Brian Stephenson Juana Rudati U. of Michigan

> David Reis Philip H. Bucksbaum Adrian Cavalieri Soo Lee David Fritz Matthew F. DeCamp

BioCARS

Keith Moffat Reinhard Pahl

ESRF

Francesco Sette Olivier Hignette

SLAC

Paul Emma
Patrick Krejcik
Holger Schlarb
John Arthur
Sean Brennan
Roman Tatchyn
Jerome Hastings
Kelly Gaffney

NSLS

D. Peter Siddons Chi-Chang Kao

Uppsala University

Janos Hajdu
David van der Spoel
Richard W. Lee
Henry Chapman
Carl Calleman
Magnus Bergh
Gosta Huldt

Copenhagen University

Jens Als-Nielsen

Lund University
Jörgen Larsson
Ola Synnergren
Tue Hansen

Chalmers University of Technology Richard Neutze

SPPS Facility

Spatially Resolved Electro-Optic Sampling (EOS)

Arrival time and duration of bunch is encoded on profile of laser

e temporal information is encoded on transverse profile of laser beam

Adrian Cavalieri et al., U. Mich.

Timing Jitter

170 fs rms

At (fs)

Structural phase transitions with sub-picosecond resolution

- For $j = 24 \text{ deg and } x\text{-rays grazing: } \sim 18 \text{ fs/pixel}$
- Measures complete time history around t=0 in single shot

Melting/EO Comparison

•Electro-optic sampling technique (sensitive to electron beam timing) agrees with location of edge in melting data to < 100 fs (60 fs rms)

Many experiment require picosecond x-rays:

Transient alignment of molecules

(Here, C₆H₅I viewed by photodissociation)

Peronne et al. Phys. Rev. Lett. **91**, 043003 (2003)

APS and ultrafast x-ray science

- SPPS is showing the promise and potential of ultrafast x-ray science
- 3d generation sources, with their high brightness and good access, have a big contribution to make to this area
- APS should study the feasibility of ultrafast pulse compression